<div class="eI0">
  <div class="eI1">Model:</div>
  <div class="eI2"><h2><a href="http://www.knmi.nl/" target="_blank" target="_blank">HARMONIE 40</a>(HARMONIE-AROME Cy40) from the Netherland Weather Service</h2></div>
 </div>
 <div class="eI0">
  <div class="eI1">Zaktualizowano:</div>
  <div class="eI2">4 times per day, from 06:00, 12:00, 18:00, and 00:00 UTC</div>
 </div>
 <div class="eI0">
  <div class="eI1">Czas uniwersalny:</div>
  <div class="eI2">12:00 UTC = 14:00 CEST</div>
 </div>
 <div class="eI0">
  <div class="eI1">Rozdzielczo&#347;&#263;:</div>
  <div class="eI2">0.025&deg; x 0.037&deg;</div>
 </div>
 <div class="eI0">
  <div class="eI1">parametr:</div>
  <div class="eI2">Geopotential height (tens of m) at 925 hPa (solid line) and Temperature (&deg;C) at 925 hPa (coloured, dashed line) </div>
 </div>
 <div class="eI0">
  <div class="eI1">Opis:</div>
  <div class="eI2">
This chart helps to identify areas of densely packed isotherms (lines of equal temperature) 
indicating a front. Aside from this you can use the modeled temperature in 925 hPa (2000 ft a.s.l.)
to make a rough estimate on the expected maximum temperature in 2m above the ground.
However, this method does not apply to (winter) inversions. 
    
  </div>
 </div>
 <div class="eI0">
  <div class="eI1">Spaghetti plots:</div>
  <div class="eI2">
are a method of viewing data from an ensemble forecast.<br>
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.<br>
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.<br>
<br>Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from <a href="http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&amp;oldid=300824682" target="_blank">http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&amp;oldid=300824682</a>
   </div>
  </div>
 <div class="eI0">
  <div class="eI1">HARMONIE:</div>
  <div class="eI2"><a href="http://www.knmi.nl/" target="_blank">HARMONIE-AROME</a> The non-hydrostatic convection-permitting HARMONIE-AROME model is developed in a code cooperation of the HIRLAM Consortium with Météo-France and ALADIN, and builds upon model components that have largely initially been developed in these two communities. The forecast model and analysis of HARMONIE-AROME are originally based on the AROME-France model from Météo-France (Seity et al, 2011, Brousseau et al, 2011) , but differ from the AROME-France configuration in various respects. A detailed description of the HARMONIE-AROME forecast model setup and its similarities and differences with respect to AROME-France can be found in (Bengtsson et al. 2017). [From: HIRLAM (2017)]<br>
</div></div>
 <div class="eI0">
  <div class="eI1">NWP:</div>
  <div class="eI2">Numeryczna prognoza pogody - ocena stanu atmosfery w przysz&#322;o&#347;ci na podstawie znajomo&#347;ci warunk&oacute;w pocz&#261;tkowych oraz si&#322; dzia&#322;aj&#261;cych na powietrze. Numeryczna prognoza oparta jest na rozwi&#261;zaniu r&oacute;wna&#324; ruchu powietrza za pomoc&#261; ich dyskretyzacji i wykorzystaniu do oblicze&#324; maszyn matematycznych.<br>
Pocz&#261;tkowy stan atmosfery wyznacza si&#281; na podstawie jednoczesnych pomiar&oacute;w na ca&#322;ym globie ziemskim. R&oacute;wnania ruchu cz&#261;stek powietrza wprowadza si&#281; zak&#322;adaj&#261;c, &#380;e powietrze jest ciecz&#261;. R&oacute;wna&#324; tych nie mo&#380;na rozwi&#261;zać w prosty spos&oacute;b. Kluczowym uproszczeniem, wymagaj&#261;cym jednak zastosowania komputer&oacute;w, jest za&#322;o&#380;enie, &#380;e atmosfer&#281; mo&#380;na w przybli&#380;eniu opisać jako wiele dyskretnych element&oacute;w na kt&oacute;re oddzia&#322;ywaj&#261; rozmaite procesy fizyczne. Komputery wykorzystywane s&#261; do oblicze&#324; zmian w czasie temperatury, ci&#347;nienia, wilgotno&#347;ci, pr&#281;dko&#347;ci przep&#322;ywu, i innych wielko&#347;ci opisuj&#261;cych element powietrza. Zmiany tych w&#322;asno&#347;ci fizycznych powodowane s&#261; przez rozmaitego rodzaju procesy, takie jak wymiana ciep&#322;a i masy, opad deszczu, ruch nad g&oacute;rami, tarcie powietrza, konwekcj&#281;, wpływ promieniowania s&#322;onecznego, oraz wp&#322;yw oddziaływania z innymi cz&#261;stkami powietrza. Komputerowe obliczenia dla wszystkich element&oacute;w atmosfery daj&#261; stan atmosfery w przysz&#322;o&#347;ci czyli prognoz&#281; pogody.<br>
W dyskretyzacji r&oacute;wna&#324; ruchu powietrza wykorzystuje si&#281; metody numeryczne r&oacute;wna&#324; r&oacute;&#380;niczkowych cz&#261;stkowych - st&#261;d nazwa numeryczna prognoza pogody.<br>
<br>Zobacz Wikipedia, Numeryczna prognoza pogody, <a href="http://pl.wikipedia.org/wiki/Numeryczna_prognoza_pogody" target="_blank">http://pl.wikipedia.org/wiki/Numeryczna_prognoza_pogody</a> (dost&#281;p lut. 9, 2010, 20:49 UTC).<br>
</div></div>
</div>