<div class="eI0">
  <div class="eI1">Mod&egrave;le:</div>
  <div class="eI2"><h2><a href="http://www.knmi.nl/" target="_blank" target="_blank">HARMONIE</a>(HIRLAM ALADIN) from the Netherland Weather Service</h2></div>
 </div>
 <div class="eI0">
  <div class="eI1">Mise &agrave; jour:</div>
  <div class="eI2">4 times per day, from 06:00, 12:00, 18:00, and 00:00 UTC</div>
 </div>
 <div class="eI0">
  <div class="eI1">Greenwich Mean Time:</div>
  <div class="eI2">12:00 UTC = 13:00 CET</div>
 </div>
 <div class="eI0">
  <div class="eI1">R&eacute;solution:</div>
  <div class="eI2">0.023&deg; x 0.037&deg;</div>
 </div>
 <div class="eI0">
  <div class="eI1">Param&egrave;tre:</div>
  <div class="eI2">Sea Level Pressure in hPa </div>
 </div>
 <div class="eI0">
  <div class="eI1">Description:</div>
  <div class="eI2">
The surface chart (also known as surface synoptic chart) presents the distribution of 
the atmospheric pressure observed at any given station on the earth's surface 
reduced to sea level.
You can read the positions of the controlling weather features (highs, lows, ridges or 
troughs) from the distribution of the isobars (lines of equal sea level pressure).
The isobars define the pressure field. The pressure field is the dominating player in 
the weather system.
Additionally, this map helps you to identify synoptic-scale waves and gives you a first 
estimate on meso-scale fronts.
    
  </div>
 </div>
 <div class="eI0">
  <div class="eI1">Spaghetti plots:</div>
  <div class="eI2">
are a method of viewing data from an ensemble forecast.<br>
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.<br>
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.<br>
<br>Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from <a href="http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&amp;oldid=300824682" target="_blank">http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&amp;oldid=300824682</a>
   </div>
  </div>
 <div class="eI0">
  <div class="eI1">NWP:</div>
  <div class="eI2">La pr&eacute;vision num&eacute;rique du temps (PNT) est une application de la m&eacute;t&eacute;orologie et de l'informatique. Elle repose sur le choix d'&eacute;quations math&eacute;matiques offrant une proche approximation du comportement de l'atmosph&egrave;re r&eacute;elle. Ces &eacute;quations sont ensuite r&eacute;solues, &agrave; l'aide d'un ordinateur, pour obtenir une simulation acc&eacute;l&eacute;r&eacute;e des &eacute;tats futurs de l'atmosph&egrave;re. Le logiciel mettant en &oelig;uvre cette simulation est appel&eacute; un mod&egrave;le de pr&eacute;vision num&eacute;rique du temps.<br><br>
<br>Pr&eacute;vision num&eacute;rique du temps. (2009, d&eacute;cembre 12). Wikip&eacute;dia, l'encyclop&eacute;die libre. Page consult&eacute;e le 20:48, f&eacute;vrier 9, 2010 &agrave; partir de <a href="http://fr.wikipedia.org/w/index.php?title=Pr%C3%A9vision_num%C3%A9rique_du_temps&oldid=47652746" target="_blank">http://fr.wikipedia.org/w/index.php?title=Pr%C3%A9vision_num%C3%A9rique_du_temps&oldid=47652746</a>.<br>
</div></div>
</div>