<div class="eI0">
  <div class="eI1">Model:</div>
  <div class="eI2"><h2>CFS: The NCEP Climate Forecast System (CFS)</h2></div>
 </div>
 <div class="eI0">
  <div class="eI1">Zaktualizowano:</div>
  <div class="eI2">1 times per day, at 17:00 UTC</div>
 </div>
 <div class="eI0">
  <div class="eI1">Czas uniwersalny:</div>
  <div class="eI2">12:00 UTC = 13:00 CET</div>
 </div>
 <div class="eI0">
  <div class="eI1">Rozdzielczo&#347;&#263;:</div>
  <div class="eI2">1.0&deg; x 1.0&deg;</div>
 </div>
 <div class="eI0">
  <div class="eI1">parametr:</div>
  <div class="eI2">Sea Level Pressure in hPa </div>
 </div>
 <div class="eI0">
  <div class="eI1">Opis:</div>
  <div class="eI2">
The surface chart (also known as surface synoptic chart) presents the distribution of 
the atmospheric pressure observed at any given station on the earth's surface 
reduced to sea level.
You can read the positions of the controlling weather features (highs, lows, ridges or 
troughs) from the distribution of the isobars (lines of equal sea level pressure).
The isobars define the pressure field. The pressure field is the dominating player in 
the weather system.
Additionally, this map helps you to identify synoptic-scale waves and gives you a first 
estimate on meso-scale fronts.
    
  </div>
 </div>
 <div class="eI0">
  <div class="eI1">Spaghetti plots:</div>
  <div class="eI2">
are a method of viewing data from an ensemble forecast.<br>
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.<br>
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.<br>
<br>Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from <a href="http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&amp;oldid=300824682" target="_blank">http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&amp;oldid=300824682</a>
   </div>
  </div>
 <div class="eI0">
  <div class="eI1">CFS:</div>
  <div class="eI2">The CFS model is different to any other operational weather forecasting model you will see on Weatheronline.
<br>
Developed at the Environmental Modelling Center at NCEP (National Centers for Environment Prediction) in the USA, 
the CFS became operational in August 2004.
<br>
The systems works by taking reanalysis data (NCEP Reanalysis 2) and ocean conditions from GODAS 
(Global Ocean data Assimilation).  Both of these data sets are for the previous day, and so you 
should be aware that before initialisation the data is already one day old.
<br>
Four runs of the model are then made, each with slightly differing starting conditions, and from 
these a prediction is made.
<br>
Caution should be employed when using the forecasts made by the CFS. However, it is useful when 
monitored daily in assessing forecasts for the coming months, the confidence levels in these 
forecasts and in an assessment of how such long range models perform.
<br>
A description of the CFS is given in the following manuscript.<br>
S. Saha, S. Nadiga, C. Thiaw, J. Wang, W. Wang, Q. Zhang, H. M. van den Dool, H.-L. Pan, S. Moorthi, D. Behringer, D. Stokes, M. Pena, S. Lord, G. White, W. Ebisuzaki, P. Peng, P. Xie , 2006 : The NCEP Climate Forecast System. Journal of Climate, Vol. 19, No. 15, pages 3483.3517.<br>
<a href="http://cfs.ncep.noaa.gov/" target="_blank">http://cfs.ncep.noaa.gov/</a><br>
</div></div>
 <div class="eI0">
  <div class="eI1">NWP:</div>
  <div class="eI2">Numeryczna prognoza pogody - ocena stanu atmosfery w przysz&#322;o&#347;ci na podstawie znajomo&#347;ci warunk&oacute;w pocz&#261;tkowych oraz si&#322; dzia&#322;aj&#261;cych na powietrze. Numeryczna prognoza oparta jest na rozwi&#261;zaniu r&oacute;wna&#324; ruchu powietrza za pomoc&#261; ich dyskretyzacji i wykorzystaniu do oblicze&#324; maszyn matematycznych.<br>
Pocz&#261;tkowy stan atmosfery wyznacza si&#281; na podstawie jednoczesnych pomiar&oacute;w na ca&#322;ym globie ziemskim. R&oacute;wnania ruchu cz&#261;stek powietrza wprowadza si&#281; zak&#322;adaj&#261;c, &#380;e powietrze jest ciecz&#261;. R&oacute;wna&#324; tych nie mo&#380;na rozwi&#261;zać w prosty spos&oacute;b. Kluczowym uproszczeniem, wymagaj&#261;cym jednak zastosowania komputer&oacute;w, jest za&#322;o&#380;enie, &#380;e atmosfer&#281; mo&#380;na w przybli&#380;eniu opisać jako wiele dyskretnych element&oacute;w na kt&oacute;re oddzia&#322;ywaj&#261; rozmaite procesy fizyczne. Komputery wykorzystywane s&#261; do oblicze&#324; zmian w czasie temperatury, ci&#347;nienia, wilgotno&#347;ci, pr&#281;dko&#347;ci przep&#322;ywu, i innych wielko&#347;ci opisuj&#261;cych element powietrza. Zmiany tych w&#322;asno&#347;ci fizycznych powodowane s&#261; przez rozmaitego rodzaju procesy, takie jak wymiana ciep&#322;a i masy, opad deszczu, ruch nad g&oacute;rami, tarcie powietrza, konwekcj&#281;, wpływ promieniowania s&#322;onecznego, oraz wp&#322;yw oddziaływania z innymi cz&#261;stkami powietrza. Komputerowe obliczenia dla wszystkich element&oacute;w atmosfery daj&#261; stan atmosfery w przysz&#322;o&#347;ci czyli prognoz&#281; pogody.<br>
W dyskretyzacji r&oacute;wna&#324; ruchu powietrza wykorzystuje si&#281; metody numeryczne r&oacute;wna&#324; r&oacute;&#380;niczkowych cz&#261;stkowych - st&#261;d nazwa numeryczna prognoza pogody.<br>
<br>Zobacz Wikipedia, Numeryczna prognoza pogody, <a href="http://pl.wikipedia.org/wiki/Numeryczna_prognoza_pogody" target="_blank">http://pl.wikipedia.org/wiki/Numeryczna_prognoza_pogody</a> (dost&#281;p lut. 9, 2010, 20:49 UTC).<br>
</div></div>
</div>