Modell:

NCMRWF(National Centre for Medium Range Weather Forecasting from India)

Aktualisierung:
1 times per day, from 00:00 UTC
Greenwich Mean Time:
12:00 UTC = 13:00 MEZ
Auflösung:
0.125° x 0.125° (India, South Asia)
Parameter:
Geopotential und Temperatur in 500 hPa
Beschreibung:
In dieser Karte sind das vom "Global Forecast System" (" GFS", früher "AVN") des amerikanischen Wetterdienstes vorhergesagte Geopotential und die vorhergesagte Temperatur in 500 hPa dargestellt. Man erkennt deutlich die langen Wellen (Trog / Rücken). Sie bestimmen den Witterungscharakter vor Ort (naß, kalt / trocken, warm). Die langen Wellen steuern die kleineren synoptisch-skaligen Wellen. Darum gibt die "Höhenkarte" Aufschluß über die Dynamik in unserer Atmosphäre.
Spaghetti plots:
are a method of viewing data from an ensemble forecast.
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.

Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&oldid=300824682
NCMRWF:
NCMRWF
This modeling system is an up-graded version of NCEP GFS (as per 28 July 2010). A general description of the modeling system can be found in the following link:
http://www.ncmrwf.gov.in/t254-model/t254_des.pdf
An brief overview of GFS is given below.
------------------------------------------------------
Dynamics: Spectral, Hybrid sigma-p, Reduced Gaussian grids
Time integration: Leapfrog/Semi-implicit
Time filter: Asselin
Horizontal diffusion: 8th
order wavenumber dependent
Orography: Mean orography
Surface fluxes: Monin-obhukov Similarity
Turbulent fluxes: Non-local closure
SW Radiation; RRTM
LW Radiation: RRTM
Deep Convection: SAS
Shallow convection: Mass-flux based
Grid-scale condensation: Zhao Microphysics
Land Surface Processes: NOAH LSM
Cloud generation: Xu and Randal
Rainfall evaporation: Kessler
Air-sea interaction: Roughness length by Charnock
Gravity Wave Drag and mountain blocking: Based on Alpert
Sea-Ice model: Based on Winton
-----------------------------------------------
NWP:
Numerische Wettervorhersagen sind rechnergestützte Wettervorhersagen. Aus dem Zustand der Atmosphäre zu einem gegebenen Anfangszeitpunkt wird durch numerische Lösung der relevanten Gleichungen der Zustand zu späteren Zeiten berechnet. Diese Berechnungen umfassen teilweise mehr als 14 Tage und sind die Basis aller heutigen Wettervorhersagen.

In einem solchen numerischen Vorhersagemodell wird das Rechengebiet mit Gitterzellen und/oder durch eine spektrale Darstellung diskretisiert, so dass die relevanten physikalischen Größen, wie vor allem Temperatur, Luftdruck, Windrichtung und Windstärke, im dreidimensionalen Raum und als Funktion der Zeit dargestellt werden können. Die physikalischen Beziehungen, die den Zustand der Atmosphäre und seine Veränderung beschreiben, werden als System partieller Differentialgleichungen modelliert. Dieses dynamische System wird mit Verfahren der Numerik, welche als Computerprogramme meist in Fortran implementiert sind, näherungsweise gelöst. Aufgrund des großen Aufwands werden hierfür häufig Supercomputer eingesetzt.


Seite „Numerische Wettervorhersage“. In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 21. Oktober 2009, 21:11 UTC. URL: http://de.wikipedia.org/w/index.php?title=Numerische_Wettervorhersage&oldid=65856709 (Abgerufen: 9. Februar 2010, 20:46 UTC)