Modell:

GME (Global weather forecast model) from the German Weather Service

Aktualisierung:
2 times per day, from 10:00 and 23:00 UTC
Greenwich Mean Time:
12:00 UTC = 13:00 MEZ
Auflösung:
0.25° x 0.25°
Parameter:
Maximum wind velocity of convective wind gusts
Beschreibung:
The method of Ivens (1987) is used by the forecasters at KNMI to predict the maximum wind velocity associated with heavy showers or thunderstorms. The method of Ivens is based on two multiple regression equations that were derived using about 120 summertime cases (April to September) between 1980 and 1983. The upper-air data were derived from the soundings at De Bilt, and observations of thunder by synop stations were used as an indicator of the presence of convection. The regression equations for the maximum wind velocity (wmax ) in m/s according to Ivens (1987) are:

where The amount of negative buoyancy, which is estimated in these equations by the difference of the potential wet-bulb temperature at 850 and at 500 hPa, and horizontal wind velocities at one or two fixed altitudes are used to estimate the maximum wind velocity. The effect of precipitation loading is not taken into account by the method of Ivens. (Source: KNMI)
GME:
GME is the first operational weather forecast model which uses an icosahedral-hexagonal grid covering the globe. In comparison to traditional grid structures like latitude-longitude grids the icosahedral-hexagonal grid offers the advantage of a rather small variability of the area of the grid elements. Moreover, the notorious "pole-problem" of the latitude-longitude grid does not exist in the GME grid.
NWP:
Numerische Wettervorhersagen sind rechnergestützte Wettervorhersagen. Aus dem Zustand der Atmosphäre zu einem gegebenen Anfangszeitpunkt wird durch numerische Lösung der relevanten Gleichungen der Zustand zu späteren Zeiten berechnet. Diese Berechnungen umfassen teilweise mehr als 14 Tage und sind die Basis aller heutigen Wettervorhersagen.

In einem solchen numerischen Vorhersagemodell wird das Rechengebiet mit Gitterzellen und/oder durch eine spektrale Darstellung diskretisiert, so dass die relevanten physikalischen Größen, wie vor allem Temperatur, Luftdruck, Windrichtung und Windstärke, im dreidimensionalen Raum und als Funktion der Zeit dargestellt werden können. Die physikalischen Beziehungen, die den Zustand der Atmosphäre und seine Veränderung beschreiben, werden als System partieller Differentialgleichungen modelliert. Dieses dynamische System wird mit Verfahren der Numerik, welche als Computerprogramme meist in Fortran implementiert sind, näherungsweise gelöst. Aufgrund des großen Aufwands werden hierfür häufig Supercomputer eingesetzt.


Seite „Numerische Wettervorhersage“. In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 21. Oktober 2009, 21:11 UTC. URL: http://de.wikipedia.org/w/index.php?title=Numerische_Wettervorhersage&oldid=65856709 (Abgerufen: 9. Februar 2010, 20:46 UTC)