<div class="eI0">
  <div class="eI1">Model:</div>
  <div class="eI2"><h2><a href="http://www.meteofrance.fr/" target="_blank" target="_blank">Arome</a> from Meteo France</h2></div>
 </div>
 <div class="eI0">
  <div class="eI1">Ververst:</div>
  <div class="eI2">4 times per day, from 08:00, 14:00, 20:00, and 00:00 UTC</div>
 </div>
 <div class="eI0">
  <div class="eI1">Greenwich Mean Time:</div>
  <div class="eI2">12:00 UTC = 13:00 MET</div>
 </div>
 <div class="eI0">
  <div class="eI1">Resolutie:</div>
  <div class="eI2">0.01&deg; x 0.01&deg;</div>
 </div>
 <div class="eI0">
  <div class="eI1">Parameter:</div>
  <div class="eI2">Geopotentiaal op 500 hPa in gpdm (zwart) en Temperatuuradvectie op 500 hPa in K/6h (gekleurd)</div>
 </div>
 <div class="eI0">
  <div class="eI1">Beschrijving:</div>
  <div class="eI2">
De kaart "T-Adv 500" laat de advectie van koude of warme lucht zien op  500
hPa (ongeveer 5,5 km hoogte). Negatieve waardes geven koude-advectie aan,
positieve waardes warmte-advectie.
Een gevolg van koude- of warmte-advectie is het dalen of stijgen van de
geopotentiaal. Dit dalen of stijgen van de geopotentiaal leidt weer tot een
stijgen respectievelijk dalen van de verticale luchtbeweging. Beschouwing
van de zg. omega-vergelijking levert ons dat een maximum van kou-advectie
leidt tot een dalende luchtbeweging en een maximum van de warmte-advectie
leidt tot een stijgende luchtbeweging. Omdat er ook nog andere mechanismen
actief zijn (zie bijv. V-adv. 500) hoeft de uiteindelijke luchtbeweging niet
overeen te komen met het voorafgaande. <br>
In de huidige weerkamerpraktijk worden de kaarten van de
vorticiteitsadvectie er ook voor gebruikt koude- en warmtefronten te
lokaliseren. Achter (meestal ten westen van) koufronten  vindt meestal
kou-advectie plaats en achter een warmtefront meestal warmte-advectie. 

    
  </div>
 </div>
 <div class="eI0">
  <div class="eI1">Arome:</div>
  <div class="eI2"><a href="http://www.cnrm.meteo.fr/spip.php" target="_blank">Arome</a> <br>
The Arome forecasting system is a blend of the best components from the M&eacute;so-NH model, the Aladin model, and the IFS/Arpège data assimilation software. Its focus is on the numerical prediction of intense convective systems over mainland France by 2008. Other important weather phenomena will also begin to be reliably forecast, thanks to a high (kilometric) spatial resolution and the use of regional observing systems. The Arome software is designed to be accessible to a wide research community.</br>
</div></div>
 <div class="eI0">
  <div class="eI1">NWP:</div>
  <div class="eI2">Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.<br>
<br>Wikipedia, Numerical weather prediction, <a href="http://en.wikipedia.org/wiki/Numerical_weather_prediction" target="_blank">http://en.wikipedia.org/wiki/Numerical_weather_prediction</a>(as of Feb. 9, 2010, 20:50 UTC).<br>
</div></div>
</div>